一、安全须知

使用本控制器前,请您仔细阅读本手册后再进行相关的操作。

仔细阅读本操作说明书,以及用户安全须知,采取必要的安全防护措施。如果用户有其他需求,请与本 公司联系。

工作环境及防护:

1. 控制系统的工作温度为 0-40℃,当超出此环境温度时系统可能会出现工作不正常甚至死机等现象。

2. 相对湿度应控制在 0-85%。`

3. 在高温、高湿、腐蚀性气体的环境下工作时,必须采取特殊的防护措施。

4. 防止灰尘、粉尘、金属等杂物进入控制系统。

5. 应防护好控制系统的液晶屏(易碎品):使其远离尖锐物品;防止空中的物体撞到液晶屏上;当屏幕有 灰尘需要清洁时,应用柔软的纸巾或棉布轻轻擦除。

系统的操作:

系统操作时需按压相应的操作按键,在按压按键时,需要食指或中指的指肚按压。切记不能用指甲按压 按键,否则将造成按键面膜的损坏,而影响您的使用。

初次进行操作的操作者,应在了解相应功能的正确使用方法后,方可进行相应的操作,对于不熟悉的功能或参数,严禁随意操作或更改系统参数。

系统的检修:

当系统出现不正常的情况,需检修相应的连接或插座连接处时,应先切断系统电源。再进行必要的检修。 未进行严格操作的技术人员或未得到本公司授权的单位或者个人,不能打开控制系统进行维修操作,否则后果自负。

系统保修说明:

保修期:本产品自出厂之日起十二个月内。

保修范围:在保修期内,任何按使用要求操作的情况下所发生的故障。

保修期内:保修范围以外的故障为收费服务。

保修期外:所有的故障均为收费服务。

以下情况不在保修范围内:

任何违反使用要求的人为故障或意外故障,尤其电压接错接反。

带电插拔系统连接插座而造成的损坏。

自然灾害等原因导致的损坏。

未经许可,擅自拆卸、改装、修理等行为造成的损坏。

其他事项:

本说明书如有与系统功能不符、不详尽处,以系统软件功能为准。

控制功能改变或完善升级, 恕不另行通知。

本公司享有对本说明书的最终解释权。

二、产品简介

M2S 微数控产品,是本公司根据市场需求,融合现有产品特点,推出的第二代微数控产品,全新的壳体结构设计,方便用户接线。1 路面板手轮,1 路外部标准手脉 MPG 接口,中英文填表式编程,支持 U 盘导入程序、参数和开机图片,支持 U 盘导入组态功能。配备彩色液晶显示器,分辨率 480*272,工作电压与控制电压采用隔离方式,电源采用防反接保护,轻触式操作键盘。本控制器性能可靠稳定,脉冲频率最高可达 400K,4 个进给轴,一个模拟轴,2ms 高速插补,联动与非联动指令同时存在,极大的提高了零件的加工速度,精度和表面质量。

作为多普康自动化第二代微数控产品,在系统稳定性方面大大提高,脉冲频率的提高,使控制系统 最高加工速度大大提高。可广泛作为雕刻机、电焊机、数控机床、切割机、激光照排、绘图仪、贴标 机、包装机械等控制系统。

- □ X、Y、Z、C 四轴控制
- □ 2ms 插补周期
- □ 单轴直线插补输出脉冲频率: 400K
- □ 圆弧插补输出脉冲频率: 300K
- □ 四轴直线插补输出脉冲频率: 350K
- □ 【非联动四轴输出脉冲频率: 100K
- □ 支持中文、英文显示,由参数选择
- □ 参数选项新增解释说明,简单明了
- □ 28 点通用输入/12 点通用输出(高配版为 37 点通用输入/22 点通用输出)
- □ 具有掉电记忆功能
- □ 支持时间锁机功能
- □ 具有软限位选择

□ 具备 USB 接口,支持 U 盘导入程序、参数和开机图片。

- □ 支持用户自定义修改界面,支持 U 盘导入组态功能。
- □ 带有1路面板手轮。
- □ 带有1路外部标准手脉 MPG 接口(低配版不具备此功能)
- □ 带有1路0-10V 主轴调速模拟量输出接口(低配版不具备此功能)
- □ 支持开机回机械零点功能
- □ 支持开机回机械零顺序选择
- □ 使用连续速度指令模式,两个运动速度指令间,没有速度突升突降
- □ 非联动指令(单个轴运动不受其它轴影响),与联动指令配合使用,加工更方便
- 2.1 技术规格
- □ 控制轴数
 - 控制轴数: 1~4 轴 (X、Y、Z、C)
 - 联动轴数: X、Y、Z、C轴可做直线插补, X、Y轴可做圆弧插补
 - 非联动轴数: 1~4 轴 (X、Y、Z、C)
 - 主轴: S
- □ 进给轴功能
 - 最小数据单位: 0.001(单位: s、mm、圈数、度数等
 - 最大数据尺寸: ±99999.999
 - 单轴快速移动速度: 当脉冲当量为 0.001mm, 最高 24m/min
 - 四轴快速移动速度: 当脉冲当量为 0.001mm, 最高 21m/min
 - 圆弧运动移动速度: 当脉冲当量为 0.001mm, 最高 18m/min
- 速度倍率: 10%~200%可调, 短按"上页""下页"键倍率增量为1%, 长按"上页""下页"倍 率增量为10%
 - 插补方式: 直线插补、圆弧插补
- □ 加减速功能
 - 加减速的起始速度、终止速度和加减速时间由参数设定
- □ 精度补偿
 - 反向间隙补偿
- □ 显示界面
 - 4.3 寸彩色液晶屏,分辨率 480*272
 - 中文、英文两种语言显示
- □ 操作管理
 - 自动: 自动执行、单步执行、终止程序
 - 手动: 电机正反转、回程序零、面板手轮、示教编程、外部手脉、回机械零
 - 程序:程序新建、编辑、删除、读入、修改
 - 参数: 控制参数、速度参数、恢复厂值、用户、组态、厂商登录、修改密码、版本信息

RIF

IO:外部启动、外部暂停、报警、急停、正负限位、输出、系统自检等

U盘:U盘导入程序、参数、开机图片和组态功能

□ 程序编辑

程序容量:最大程序行 999 行,最多程序文件数 20 个

编辑功能:程序编辑、修改、删除

□ U 盘功能

U盘导入程序、参数、开机图片和组态功能

□ 掉电记忆功能

断电再次上电,运行的坐标及工件数保持,不清零

□ 安全功能

报警输入、急停输入

硬件行程的正负限位

软件行程的正负限位

□ 指令表

指令	指令	指令
相对运动	回机械零	PLC 设定
绝对运动	速度模式	顺圆 IJ
暂停	工件置数	逆圆 IJ
输出	工件计数	连续模式
循环	子程序调用	模拟量输出
顺圆运动	子程序开始	非联动速度
逆圆运动	子程序结束	非联动相对
延时	坐标设定	非联动缓停
判断跳转	结束	非联动急停
绝对跳转	坐标比较	判断完成
快速运动	PLC 比较	等待完成

三、安装连接篇

3.1 M2S 背面图

3.2 与驱动单元连接

M2S 微数控 1~4 轴可驱动伺服或步进驱动器,电源只需系统供电。 4 轴微数控分别为 X、Y、Z、C 轴,接线方式一样,都是脉冲差分输出。

M2S 微数控定义

驱动器或伺服定义

3.3 供电电源

M2S 微数控电源采用双隔离电源,控制电压与工作电压采用隔离的方式,目的系统抗干扰性更强。电路采取防反接措施,能有效避免客户接错烧坏控制器。两路电源分别接 24V 开关电源。

3.4.1 输入

M2S 微数控输入口 01~28, 配合 I0 设置中的参数,能够实现报警输入、急停输入、外部启动、外部 暂停、升速输入、降速输入、正负限位、手动电机正反转、外部回机械零等功能。

输出信号可用于驱动继电器、电磁阀或指示灯等,该输出信号通过继电器、电磁阀或指示灯等与 I0 电源正极接通,输出功能有效; 与 I0 电源断开或无输出信号时,输出功能无效。I/O 接口中共有 22 路输出,外部接线方式一样。

3.5 USB 接口

M2S 拥有1路USB 接口,兼容16GB 以下U盘。支持U盘导入程序、参数和开机图片,支持U盘导入组态功能。

3.6 M2S 外形尺寸及其安装

外型尺寸: 长×宽×厚 160×230×37.5mm 嵌入口尺寸: 长×宽×厚 140×210×35mm

四、操作篇

4.1 按键定义

M2S运动控制器按键定义,分为中文、英文版,以中文按键定义为例。

按键	定义	备注
F1 F2 F3 F4	复用键,用于选择屏幕上对应的功能。	多功能键
F5 F6		
	同一界面,用于屏幕上功能扩展显示。	
自动 手动 程序 参数	点击相应的按键,进入相应的操作界面。	
IOU盘		

T PCNC 多普康微数控

	编辑状态为数字键;手动界面,长按1,2,3,6坐 标清回参考点;手动界面,输出操作时,数字键1, 2,3,6是控制输出口1,2,3,6通或断的切换键。	多功能键
4 5 7 8 9	编辑状态为数字键; 手动界面,输出操作时,数字键 4,5,7,8,9 是控制输出口 4,5,7,8,9 通断的切换键。	多功能键
- •	编辑状态为符号键。手动界面,输出操作时,分别 为控制输出口 10,12 通断的切换键。	
0	编辑状态为数字键;手动界面,长按工件清零。手动界面,输出操作时,是控制输出口11通断的切换键。	多功能键
$\uparrow \downarrow \leftarrow \rightarrow$	用于光标移动,光标移动到某个位置便可修改当前 的数据。	
上页下页	自动、手动界面下,用于增加或者减少当前速度 F 值的倍率;其余界面用于上下翻页。	多功能键
确认删除	在部分界面,根据提示进行确认或删除。	
插行	在程序编辑界面,当前指令的前面,插入一条结束 指令。	
切换	程序编辑、10设置、参数设置用于选择状态。	
	手动界面,各轴正反转控制按键。	
清零	手动界面,将各轴坐标清回参考点。	
	手动界面,用于回机械零,按完此键,再按方向键。	
输出	手动界面,按此键,再按1-9数字键,"+""0""-", 控制输出口1-12的通或断。	
X10 X100	板面手轮增量的最小距离设置 1µ m, 10µ m, 100µ m。	
启动	自动界面,用户程序的启动键。	
暂停	用户程序的暂停键,任何情况下都有效。	

4.2 开机图片

控制器上电后,首先显示开机图片,开机图片由U盘导入。

4.3 手动操作

控制器经过开机画面,默认跳转到手动操作界面(以 M2S-4000 四轴控制器为例),在参数-控制中设置开机后进入的界面。

4.3.1 界面标题

不同的功能界面有不同的标题,方便用户识别界面功能,M2S运动控制器有6大功能界面,自动执行、手动操作、程序管理、参数设置、I0设置、U盘。下图为手动操作界面图。

4.3.2 位置坐标

显示进给轴1~4轴坐标,X、Y、Z、C,突然断电,重新上电,坐标不清零。

4.3.3 输入状态 输出状态

手动搏	操作					
Х	0.	000	F	0	100%	
Y	0.	000	S	0		
Ζ	0.	000	Р	0	T C)
С	0.	000	工作	非计数	0	
输入 🕕 输出 🕕	234 234	5678 5678	900 900	12 (B (4) (2)	B601	8
长按[0]工	件清零,长扬	复[1/2/3/4]	各轴清除坐板	Ā	X 1	
手动高速	手动增量	程序回零	手轮	示教编程	外部手脉	►

实时显示输入口1~18、输出口1~12状态。

4.3.4 系统状态

F:进给速度, X、Y、Z、C, 1~4轴的合成速度。

进给速度倍率:进给轴在手动或者自动情况下,实际运行的速度=系统设置的速度*进给速度倍率, 取值范围为10%~200%。按"上页"键一下,速度倍率加1,长按速度倍率连续加10%;按"下页"键

一下,速度倍率减1%,长按速度倍率减10%。

X: 手脉的进给倍率

P: 剩余的循环次数。

T: 剩余的延时时间, 单位: s

S: 主轴的速度

工件计数:计算加工工件的数量,和程序指令中的工件置数、工件计数配合使用,控制器突然断电, 再重新上电,此数据不清零。

4.3.5 提示语

此区域显示操作时的提示语,例如:长按[0]工件清零,[1/2/3/6]各轴清除坐标。

4.3.6 工件清零

当提示语区,有提示语"长按[0]工件清零"时,长按"0"键,工件清零。

4.3.7 坐标清回参考点

当提示语区,有提示语"[1/2/3/6]各轴清除坐标"时,长按"1键",X轴坐标清回参考点,长按"2" 键,Y轴坐标清回参考点,长按"3"键,Z轴坐标清回参考点,长按"6"键,C轴清回参考点。 4.3.8 手动电机正反转

按键, X 轴正转, 按键, X 轴反转, 按键, Y 轴正转, 按键, Y 轴反转, 按键, Y 轴反转, 按键, Y 轴反转, 按键, X 轴反转, 按键, C 轴正转, 按键, C 轴反转。

4.3.9 手动高速/手动低速

按 "F1"键,手动高速、手动低速切换。当反显时,再按例 4.3.8 操作,电机连续高速运动。当正 显时,再按例 4.3.8 操作,电机连续低速运动。运行速度值,在参数-速度中,[手动高速][手动低速] 参数项中设置。

4.3.10 手动增量

按"F2"键,当手动增量反显时,进给轴将以设定值为步长,按照4.3.8操作,按一次方向键,运动一次。当手动增量正显时,按照4.3.8操作,长按方向键,将连续运动。手动增量的步长在参数-控制,[点动增量]中设置,点动时的运动速度在参数-速度,[点位速度]中设置。

4.3.11 程序回零

按 "F3" 键, "程序回零" 反显, 1~4 轴将以最高速度同时回到程序零点。

4.3.12 手动输出

先按"输出"键,再按"1~9"数字键,"+""0""-",控制1~12输出口的通断状态。

4.3.13 示教编程

按"F5"键,进入"示教编程"界面。示教编程就是用控制器通过按键一步一步地操纵刀具动作, 错了还可以擦去重来,就类似于游戏机和遥控玩具一样。让刀具按照控制器操纵的路径行走,只需一 遍控制器就记住了。然后就可以让控制器自动执行。

(1) 示教按键介绍: ①"指令"可以选择"快速运动""绝对运动""相对运动""顺圆 IJ""逆圆 IJ" 五条指令。

- ②"连续运动"可以切换为"点动运动"
- ③"中点坐标"可以保存需要运动的圆弧上第二个点。
- ④"终点坐标"可以保存需要运动的圆弧上第三个点。
- ⑤"保存程序"可以进入保存程序。

(2) 示教编程方式: ①通过"指令选择"来选择需要的指令;

键寻找需要坐标点;

③按"下页"进入到下一条;

X10

X+

④通过"指令选择"来选择好需要的指令;

键寻找需要坐标点;

⑥按"保存",输入新程序文件名 1111,按"确认"提示"保存成功"。

(3) 指令编程说明: ①"快速运动""相对运动"走的是增量值;

②"绝对运动"走绝对坐标;

③"顺圆 IJ""逆圆 IJ"走相对坐标;

(4) 举例:"顺圆 IJ"指令用"指令选择"按键选好后,第一个圆弧的就选择好了(0,0),然后

走 2, 走到 2, 作为圆弧的第二个点按"中点坐标"记忆(2,2), 然后 走 4, 走到 0,

作为第三个点按"终点坐标"记忆(4,0),这样他会算出 I=2; J=0;

以上的程序会加工出一个圆心在(2,0),半径=2,的一个半圆。

4.3.14 手轮

按"F4"键,手轮反显,通过面板上的手轮控制 1~4 轴电机,按面板上的 X100 键设置手脉移动的 最小距离。电机转动的距离=手脉转动的格数×手轮增量×进给。

4.3.15 外部手脉

按 "F6" 键,外部手脉反显,通过外部手脉控制 1~4 轴电机,在参数-速度中,手脉增量设置手脉移动的最小距离。电机转动的距离=手脉转动的格数×手脉增量×进给。

4.4 自动执行

按"自动"键,进入自动执行界面,按"启动"键,程序运行,运行的程序为最后一次在程序管理 中读入的程序,按"暂停"键有效。

自动执行					
Х	0.000	F	0	1009	%
Y	0.000	S	0		
Ζ	0.000	Р	0	Т	0
С	0.000	工件	计数	0	
程序信息					
n 1标	号: 0	模拟量输	出		
长按[0]工件清零	₿, 长按[1/2/3/4]	各轴清除坐标			
单步执行 终止	:程序				►

4.4.1 单步执行

程序是由一个个程序行组成的。按"F1"键,当"单步执行"反显时,按一次"启动"键,执行一

21V

个程序行。

4.4.2 连续执行

当"单步执行"正显时,按"启动"键,程序连续执行,到最后程序行。

4.4.3 暂停程序

程序运行时,按下"暂停"键,程序运行暂停,按"启动"键,程序接着执行

4.4.4 终止程序

程序运行时,按下"F2"键,程序运行终止,并跳到程序第一行。

4.5 程序管理

按"程序"键,进入程序管理界面,自动执行的程序,都在此界面编辑。

程序管理	
1234	{
	>
按[编辑]键读入, [删除]键删除	
程序编辑 新建程序	►

4.5.1 文件列表

此处显示 M2S 保存的所有文件,按"↑"键,"↓"键,"←"键,"→"键移动光标,选中文件,进 行文件的编辑、修改、读入、删除等操作。M2S 控制器最多可存 20 个程序文件。每个程序文件最多可 存 999 个程序行。

4.5.2 程序文件删除

在程序管理界面,按"↑"键,"↓"键,"←"键,"→"键移动光标,选中文件,按"删除"键, 出现提示语"如果决定删除文件,再按[删除]键,慎用!",再按一次"删除"键,能将程序文件彻底 删除。

4.5.3 程序编辑

按"F1"键,读入程序文件,可在此基础上进行程序指令的编辑、删除等操作。

4.5.4 新建程序

按"F2"键,新建程序文件,进入程序编辑界面。

配置参数。参数配置完毕,按"确认"键保存参数。

参数	功能说明	操作
语言	控制器支持两种语言,中文、英文	按"切换"键切换两种语言
X 轴参考点	手动状态下,长按数字"1"键,将X轴坐标	按"数字"键更改
	清空并显示为此设定值,取值范围	
	-99999. 999~99999. 999	X
X 轴分子	X 轴电子齿轮分子,取值范围为 1~99999	按"数字"键更改
X 轴分母	X轴电子齿轮分母,取值范围为1~99999	按"数字"键更改。
Y 轴参考点	手动状态下,长按数字"2"键,将Y轴坐标	按"数字"键更改
	清空并显示为此设定值,取值范围:	ALL "
	-99999. 999~99999. 999	
Y轴分子	Y轴电子齿轮分子,取值范围为1~99999	按"数字"键更改
Y轴分母	Y轴电子齿轮分母,取值范围为1~99999	按"数字"键更改
Z 轴参考点	手动状态下,长按数字"3"键,将Z轴坐标	按"数字"键更改。
	清空并显示为此设定值,取值范围:	
	-99999. 999~99999. 999	
Z 轴分子	Z轴电子齿轮分子,取值范围为1~99999	按"数字"键更改
Z 轴分母	Z轴电子齿轮分母,取值范围为1~99999	按"数字"键更改
C 轴参考点	手动状态下,长按数字"6"键,将Z轴坐标	按"数字"键更改
	清空并显示为此设定值,取值范围:	
	-99999. 999~99999. 999	
C 轴分子	C轴电子齿轮分子,取值范围为1~999999	按"数字"键更改
C 轴分母	C轴电子齿轮分母,取值范围为1~99999	按"数字"键更改
升速时间(毫秒)	电机升速时间,电机会以启动速度运行经过	按"数字"键更改
	设定的升速时间,运行到设定的 F 速度,取	
	值范围: 0~9999	
点动增量 (微米)	手动状态下,点动增量的数值,取值范围:	按"数字"键更改
	0~99999	
X 轴间隙(微米)	X 轴反向间隙值(根据设备实际测量获得)	按"数字"键更改
Y 轴间隙(微米)	Y轴反向间隙值(根据设备实际测量获得)	按"数字"键更改
Z 轴间隙(微米)	Z 轴反向间隙值(根据设备实际测量获得)	按"数字"键更改
C 轴间隙(微米)	C 轴反向间隙值(根据设备实际测量获得)	按"数字"键更改

T PCNC 多普康微数控

按"切换"键选择轴

X 零开机启动 禁	决定 X 轴是否开机后系统优先运行回机械零	按"切换"键选择有效或禁止
止	的动作	
Y 零开机启动 禁	决定 Y 轴是否开机后系统优先运行回机械零	按"切换"键选择有效或禁止
止	的动作	
Z 零开机启动 禁	决定 Z 轴是否开机后系统优先运行回机械零	按"切换"键选择有效或禁止
止	的动作	<u> </u>
C 零开机启动 禁	决定 C 轴是否开机后系统优先运行回机械零	按"切换"键选择有效或禁止
止	的动作	Y
注: 当1~4 轴同时	设置零开机启动,控制器将从 X 轴, Y 轴, Z 轴	,C轴依次回机械零。
另:各轴开机回答	零方向在 IO-手动输入中 X 零启动、Y 零启动、	Z 零启动、C 零启动参数项设置
开机首界面	设置开机后自动进入的界面。	按"切换"键选择界面
手脉增量(微米)	外部手轮移动的最小单位	按"数字"键更改
软限位	有效时,运动中的坐标值不能超过其限定值。	按"切换"键选择禁止或者有
	坐标限定值在参数-速度中设置	效

4.6.3 速度参数

开机回零顺序

通过面板上的"F2"键进入速度参数界面。按"↑"键或者"↓"键,移动光标,选中参数。配置 参数,修改数据完毕。按"确认"键,保存参数。

设置 1~4 轴开机回机械零顺序

参数	功能说明	操作
合成速度(mm/min)	1~4 轴合成最高限速,系统运行时,1~4 轴	按"数字"键更改
	合成速度都不得超过此速度	
启动速度(mm/min) 乙	电机启动时,会以此速度运行,在升速时间	按"数字"键更改
KA	内运行至程序设定中的F值速度	
手动高速 (mm/min)	手动界面下高速时的速度	按"数字"键更改
手动低速 (mm/min)	手动界面下低速时的速度	按"数字"键更改
点位速度(mm/min)	点动时的速度	按"数字"键更改
回零高速(mm/min)	回机械零时的高速,回机械零时,首先以回	按"数字"键更改
	零高速运行	
回零低速(mm/min)	回机械零时的低速,回机械零时,首先以回	按"数字"键更改
	零高速运行,碰到机械开关后再以回零低速	
	运行	
回零点模式	回机械零的两种方式,经过开关,不过开关	按"切换"键切换两种模式

T PCNC 多普康微数控

主轴速度 (r/min)	主轴 S 输出的最高速度。模拟量输出 10V 时	按"数字"键更改
	对应的速度。	
X/Y/Z/C 正限坐标	设定软件正向限位坐标,X/Y/Z/C 轴向正方	按"数字"键更改
	向运动不能超过此坐标	
X/Y/Z/C 负限坐标	设定软件负向限位坐标,X/Y/Z/C 轴向负方	按"数字"键更改
	向运动不能超过此坐标	×.
组态功能	此选项有效时,才能实现组态功能	按"切换"键选择禁止有效

4.6.4 恢复厂值

通过面板上的"F3"键进入恢复厂值界面。按"确认"键将所有参数恢复出厂设置,请谨慎使用。

4.6.5 密码更改

通过面板上的"F5"键,进入密码更改界面。

按"数字"键输入新密码。按"↓"键,移动光标,再次输入新密码,按"确认"键,保存新密码。 按"上页"或"下页"键切换,修改不同功能密码。

4.6.6 版本信息

按 "F6"键,进入系统版本界面,此界面显示控制器软件和硬件版本号。我们的产品在不断的升级中,不同批次的软件或硬件版本号可能不一样。

4.7 I0 设置

通过面板上的"IO"键,进入外部 IO 设置界面(默认进入系统参数界面)。此界面功能之一,将某 一输入口定义成某一功能,接一按钮或者开关,在按钮或者开关通断中实现功能。

按"↑""↓""←""→"移动光标,修改参数。禁止有效,常开常闭,按"切换"键更改。输入口 序号,按"数字"键设置。

4.7.1 系统输入

系统输入设置界面包含设置正负限位检测输入信号,报警信号,急停信号,回机械零零点输入信号, 外部启动,外部暂停,输入口控制输出口等功能。

参数	功能说明
X轴正限	设置X轴正限位检测输入信号
X轴负限	设置 X 轴负限位检测输入信号
Y轴正限	设置Y轴正限位检测输入信号
Y轴负限	设置Y轴负限位检测输入信号
Z 轴正限	设置 Z 轴正限位检测输入信号
Z 轴负限	设置 Z 轴负限位检测输入信号
C轴正限	设置C轴正限位检测输入信号
C轴负限	设置C轴负限位检测输入信号
报警输入	外接报警输入信号

急停输入	外接急停输入信号	
X轴零点	X 轴机械零点检测输入信号(见 4.9.2 举例)	
Y轴零点	Y 轴机械零点检测输入信号	
Z 轴零点	Z 轴机械零点检测输入信号	
C 轴零点	C 轴机械零点检测输入信号	
外部启动	自动运行中,外部启动信号(见4.9.3举例)	~
外部暂停	外部暂停信号	
升速输入	外部开关速度倍率升速按钮设定	× ×
降速输入	外部开关速度倍率降速按钮设定	
输出口 1~16	输入口控制输出口状态设置	
清坐标零	外部开关清各轴参考点	

4.7.2 手动输入

通过按面板上的"F2"键,进入外部手动参数界面。此界面可设置外部手动参数。

X 高速+	X轴外部手动正转高速输入信号
X 高速-	X轴外部手动反转高速输入信号
X 低速+	X轴外部手动正转低速输入信号
X 低速-	X轴外部手动反转低速输入信号
Y 高速+	Y轴外部手动正转高速输入信号
Y 高速-	Y轴外部手动反转低速输入信号
Y 低速+	Y轴外部手动正转低速输入信号
Y 低速-	Y轴外部手动反转低速输入信号
Z 高速+	Z 轴外部手动正转高速输入信号
Z 高速-	Z 轴外部手动反转高速输入信号
Z 低速+	Z 轴外部手动正转低速输入信号
Z 低速-	Z 轴外部手动反转低速输入信号
C 高速+	C轴外部手动正转高速输入信号
C 高速-	C轴外部手动反转高速输入信号
C 低速+	C轴外部手动正转低速输入信号
C 低速-	C轴外部手动反转低速输入信号
X零启动	X 轴回机械零外部手动输入信号(见 4.9.2 举例)
Y零启动	Y轴回机械零外部手动输入信号
Z零启动	Z 轴回机械零外部手动输入信号

C零启动	C 轴回机械零外部手动输入信号
回程序零	1~4 轴回程序零外部手动输入信号

4.7.3 系统输出

按"F3"键,系统输出。设置程序自动运行,暂停时输出口1-12的状态。

4.7.4 输入测试

按 "F4"键,进入实际输入测试界面。数字序号 01~28 分别对应输入口 01~28,当输入口与 I0 电 源 24V 地短接时,对应的位置变成"通",否则为"断",通过此操作可以测试输入口信号是否正常。

为提高输出信号的可靠性,系统具有干扰过滤功能,信号需要保持2毫秒以上。

没有变化时,可能出现以下情况:

24V I0 电源没有接入

该输入信号线连接不正常

该路输入信号电路出现故障

4.7.5 输出测试

通过按面板上的"F5"键,进入实际输出测试界面。数字序号 01~22,分别对应输出口 01~22,通 过"↑""↓""←""→"四键移动光标,选择输出口。按"切换"键,对用位置由"通"变为"断", 或者由"断"变为"通"。当"通"时,此输出口和 IO 电源的 24V 之间有了电压,当"断"时,此输 出口和 IO 电源之间没有电压。当界面没有变化或者输出口没有信号输出,可能为如下情况:

该路输出信号电路出现故障

24V I0 电源没有正常连接

4.8 U盘

用上位机软件将开机图片、参数、程序、组态放入U盘,将U盘插入控制器中,按控制器"U盘"键, 进入U盘操作界面。

按 "F2"键, 查看 U 盘中图片列表。按 "F3"键, 查看 U 盘中程序列表。按 "F4"键, 查看 U 盘中 参数列表。按 "F5"键, 查看 U 盘中的组态列表。

上述列表中的文件 通过上下移动光标选中,再按 "F1"键,导入文件。

4.9 部分功能说明及举例

4.9.1 时间锁机

登录厂商密码后,参数-速度中将多出一项功能:时间锁机 禁止:按"切换"键选择禁止或者有效, 当[有效]时,并按"确认"键保存后:

再按面板上的 "F6"键,进入版本信息界面,再按 "切换"键, 出现全新的一个界面,能设置参数 信息。

限制密码(8位),限制时间(小时),剩余时间(小时,显示已使用过的时间后准备锁机的时间), 设置完成,按提示保存,上电重启,生效。

4.9.2 X 轴回机械零外部启动

将零点开关(常开)接入输入口1,回零启动开关(常开)接入输入口2。在IO-手动输入找到[X零 启动]参数,设置:正(回零方向)常开口2。在IO-系统输入找到[X轴零点],设置:有效常开口 1(常开常闭,禁止有效,按"切换"键选择),按"确认"键保存。

4.9.3 外部启动程序

将启动开关(常开)接入输入口1。在 IO-系统输入中找到[外部启动]参数,设置:有效常开口1 (常开常闭,禁止有效,按"切换"键选择),按"确定"键保存。

5.编程

5.1 编程基本知识

1. 进给:用指定的速度使刀具运动切削工件称为进给,进给速度用数值指定。例: 让刀具以 200mm/min 的速度切削,指令为: F200

2. 程序和指令:数控加工每一步工作,都是按规定程序进行的,每一个加工程序段由若干个程序字组成。

3. 反向间隙:指某一轴改变方向时所引起的空程误差,其大小与丝杠螺母间隙、传动链的间隙、机床的刚性有关。使用时应设法从机械上消除此间隙,否则即使设置了此参数,在某些条件下,还会造成加工不理想。

4. 速度倍率:对当前设定的 F 速度进行改变,即乘以速度倍率。一般在调试过程中实验最佳的加工 速度,实验完成后应将相应的 F 速度值改为实际的最佳速度,即正常加工时,速度倍率处于 100%的位置。

5. 行号和标号:标号和行号(行号自动产生)不同,当循环或跳转时,需要给定跳转到的目的标号 (非行号),相应的入口处应给定标号,且与跳转指令后的目的标号相同。行号是自动产生的序列号, 标号是特指的程序行,且只有跳转入口处需要知道标号,非入口程序段不需要制定标号。

不同的程序行的标号不能相同(0除外)

5.2 程序字

程序字	解释
标号	跳转、循环、坐标比较时被搜索的标记,也就是当前行的另一个标记名字,不用
	时不填
X	X 轴增量或绝对坐标;速度模式指令时,设置 X 轴运行的速度
Y	Y 轴增量或绝对坐标; 速度模式指令时, 设置 Y 轴运行的速度
Z	Z 轴增量或绝对坐标;速度模式指令时,设置 Z 轴运行的速度
C	C 轴增量或绝对坐标; 速度模式指令时, 设置 C 轴运行的速度
F	指定进给速度
R	圆弧指令的半径值, ≤180°R为正值, >180°<360°R为负值
时间	延时指令中,延时的时间
输入口号	在暂停、判断、速度模式指令,用来检测的输入口
条件	比较指令时,用于设定比较条件,大于、等于或小于;判断、暂停指令中,需要
	判断的外部输入口条件通或者断,然后进行设定的跳转动作。
目的标号	暂停、循环、判断跳转、坐标比较指令中,根据设定的条件,然后跳转到指定的

	标号位置
目的行号	坐标比较指令,当满足某一条件,跳转到设定的程序行
状态	输出指令中,给定输出口的动作状态通或者断
回零方向	回机械零中,设定的回零方向正或者负
选定的轴	回机械零中,设定的回零轴,单轴默认为X
子程序名	编写子程序时,需要制定一个可以用作调用的名字,填写数字,不能重复
设定的值	工件置数指令中,工件置数的起点数值
计数方向	工件计数指令中,计数的方向加或者减
数值	坐标比较指令,填写需要比较的数值
输出口号	输出指令中,用于控制某个输出口的通断状态
循环次数	循环指令中,填写循环次数
延时时间	延时指令,用于设定延时时间
停止条件	速度指令中,检测某个输入口的状态,结束此指令

5.3 指令解析

为便于使用,本控制器采用汉字命令选择方式,通过屏幕下方指令对应的复用键选择指令,为方便 用户,各指令采用固定程序格式,提示输入相应的程序数据。对于不涉及数据可不修改,本系统最大 程序行数 999 行。

5.3.1 结束

在程序管理界面,按"F2"键,新建程序,进入程序编辑界面,看到的指令就是结束。结束程序的执行,当出现不能识别的指令,也当做"结束"指令。

n 1 结束

标号: 0

参数:无

5.3.2 相对运动

按屏幕下方 "F1" ~ "F6" 键,选择需要的指令。

直线插补,走相对坐标,沿直线以F速度×倍率运动,此运动受速度倍率的影响,与当前F速度直接相关(注:凡是与速度F相关的指令,都受速度倍率影响)。

n 1 相	对运动			
标号: 0	X :	0.000	Y :	0.000
\sim	Ζ:	0.000	C :	0.000
	F:	0		

参数: X(X 向运动增量), Y(Y 向运动增量), Z(Z 向运动增量), C(C 向运动增量), F(运动速度) 5.3.3 绝对运动

直线插补,走绝对坐标,沿直线以 F 速度×速度倍率从当前点运动。此运动受速度倍率的影响,与 当前 F 速度直接相关。 n 1 绝对运动

标号:	0	X :	0.000	Y :	0.000
		Ζ:	0.000	C :	0.000
		F:	0		

参数: X (X 向绝对坐标), Y (Y 向绝对坐标), Z (Z 向绝对坐标), C (C 向绝对坐标), F (运动速度) 5.3.4 暂停

执行到该指令时,通过检测设定的输入口状态进行暂停判断,符合条件暂停在当前状态,不符合条件时,跳转到与目的行号一致的行号处,如果目的行号为0,则自动往下一行执行。

n 1 暂停

标号: 0 输入口号: 0 条件: 断 目的行号: 0

参数:输入口号(控制器输入口1-28),条件(用来进行判断对比的条件,某个输出口通或断,按"切换"键选择),目的行号(检测条件不符合时,程序跳转至于行号相同的程序行处,如果此处填写为0,则自动向下一行执行)

5.3.5 输出

设置输出口的状态。

n 1 输出

标号: 0 输出口号: 0 0 0 0 0 状态: 断

参数:输出口号(控制器输出口1-22,任意5个),状态(通或者断,通过"切换"键选择)

5.3.6 循环

当程序执行到此处,转移到制定的标号处执行,再执行 N 次。注意:需循环的程序段第一条指令填 写标号,循环指令前一条指令是循环程序段的最后一条指令。

n 1 循环

标号: 0 循环次数: 0 目的标号: 0

参数:循环次数(需要再循环的次数),目的标号(跳转到标号相同的指令(非行号)处)

5.3.7 顺圆运动

刀具以 F 的进给速度从圆弧起点到终点的顺时针插补, X, Y 圆弧终点是相对圆弧起点的增量值, 此 种编程方式不支持整圆,实现此指令,X,Y,R 需满足: $\sqrt{X^2 + Y^2} \leq 2R$,不满足条件指令不执行。 n 1 顺圆运动 标号: X : 0.000 Y: 0.0000 R: 0.000 F: 0 参数: X(X向运动增量),Y(Y向运动增量),R(圆弧半径。圆弧为优弧,即大于0度小于等于180 度的圆弧时,R值为正值;圆弧为劣弧,即大于180度且小于360度的圆弧时,R为负值),F(运动速

度)

示例:

	11	1	纪机运动			
	标号:	0	Х:	0.000	Y:	0.000
			Ζ:	0.000	С:	0.000
			F:	1000		
//	/刀具先	走绝对坐林	示,运动到0	点处		

n 1 逆圆运动

189.8

F: 1000

Υ:

标号:	0	Х:	131.52
		R.	120

//从 0→A 做逆圆运动

5.3.9 延时

延时相应时间,最小单位是0.001秒。

n 1 延时

标号: 0 延时时间: 0.000

参数:延时时间(填写需要延时等待的时间)

5.3.10 判断跳转

执行到本行时,检测本行设定输入口的状态进行判断,符合条件跳转到制定标号(非行号)位置,不符合条件自动执行下一行指令。

n 1 判断跳转

标号: 0 输入口号: 0 条件: 断目的标号: 0

参数:输入口号(控制器输入口1~24),条件(用作判断的条件通或者断,按"切换"键选择通或断), 目的标号(跳转到标号相同的指令(非行号)处)

5.3.11 绝对跳转

执行到本行时跳转到制定标号(非行号)处。

n 1 绝对跳转 标号: 0 目的标号: 0

参数:目的标号(跳转到标号相同的指令(非行号)处)

5.3.12 快速运动

本指令可实现快速直线插补到指定位置,当有位移时,系统以最高速度×速度倍率从当前点运动到 所给的相对坐标位置。此运动受到速度倍率的影响。 n 1 快速运动

标号:	0	X :	0.000	Y :	0.000
		Ζ:	0.000	C :	0.000

参数: X(X向相对坐标),Y(Y向相对坐标),Z(Z向相对坐标),C(C向相对坐标)

5.3.13 回机械零

根据设定的轴与回零方向进行回机械零动作

n 1 回机械零

标号: 0 选定的轴: 0 回零方向: 负

参数:选定的轴(单轴默认为 X, 多轴 X/Y/Z/C 按"切换"键选择),回零方向(回零方向按"切换"键选择)

5.3.14 速度模式

标号

速度模式,可以让各轴以不同的速度同时运行,没有指定具体的位置值,通过输入口的状态与条件 进行判断,然后选择停止,并执行下一行。

n 1 速度模式

0	X :	0		Υ:	0	
	Ζ:	0		C :	0	
	输入□	号:	0	停止	条件:	断

参数: X(X 轴速度), Y(Y 轴速度), Z(Z 轴速度), C(C 轴速度), 输入口(进行判断的输入口 1-24), 条件(用作判断的输入口状态,用"切换"键选择状态通或断)

5.3.15 工件置数

执行该指令时,自动界面和手动界面上的工件计数会清空原有数据,显示成该设定值,该指令与工件计数配合使用。

n 1 工件置数 标号: 0 设定的值:

参数:设定的值(用于加工时的起始工件数量)

5.3.16 工件计数

执行一次该指令时,自动界面和手动界面上工件计数位置的数据会选择加1或者减1。

0

n 1 工件计数 标号: 0 计数方

计数方向: 减

参数: 计数方向(执行时通过程序中设定加或者减,来对当前工件数目进行加或者减,运动到该指令 执行一次,数据就加或者减1次,计数方向按"切换"键选择)

5.3.17 子程调用

调用子程序指令,子程序内容放在主程序后面,并且需要用结束指令分开。

n 1 子程调用 标号: 0 子程序名: 0 参数: 子程序名(调用设定好名字的子程序)

5.3.18 子程开始

主程序在调用子程序时,结束指令后面需要编写子程序的内容,子程序的开头和结尾需要两个单独 的指令组合,该指令为子程序内容的开头,然后后面编写需要执行的子程序动作。

n 1 子程开始

标号: 0 子程序名: 0

参数:子程序名(用来被选择调用而设置的名字)

5.3.19 子程结束

主程序调用子程序时,结束指令后面需要编写子程序的内容,子程序的头尾需要两个单独的指令组合,此指令为子程序内容的结尾,在编写完需要执行的子程序动作后,加上该指令,来组成一段完整的子程序。

n 1 子程结束 标号: 0

参数:无

注: 子程序编写的时候头尾指令必须存在, 否则无效

5.3.20 设定坐标

设定当前位置为新坐标点。

- n 1 设定坐标
- 标号: 0 X: 0.000 Y: 0.000 Z: 0.000 C: 0.000

参数: X(X 轴的坐标), Y(Y 轴的坐标), Z(Z 轴的坐标), C(C 轴的坐标)

5.3.21 坐标比较

某个轴坐标与设定的数值做比较,满足条件,跳转到某个设定的程序行,否则继续执行下一行程序。

n 1 坐标比较

标号:	0	条件:	大于	寄存器地址:	0
	,	数值:	0.000	目的行号:	0

参数:条件(比较条件,大于、等于、小于,按"切换"键选择),轴(被比较的进给轴,按"切换" 键选择),数值(比较的数值),目的行号(需要跳转到的程序行)

5.3.22 PLC 比较

PLC 某个寄存器中的值与设定的数值做比较,满足条件,跳转到某个设定行,否则继续执行下一行程序。

n 1	P	LC比较			
标号:	0	条件: 数值:	大于 0	寄存器地址: 目的行号:	0 0

参数:条件(比较条件,大于、等于、小于,按"切换"键选择),寄存器地址(控制器要读取 PLC 寄存器的名称),数值(比较的数值),目的行号(需要跳转到的程序行)

5.3.23 PLC 设定

通过控制器向 PLC 寄存器中写入数值。

n 1 PLC设定

标号: 0 寄存器地址: 0 数值: 0

参数:寄存器地址(要写入数值的寄存器的名称),数值(填写写入的数据)

5.3.24 顺圆 IJ

标号:

0	X: 0.000	Y:	0.000
	I: 0.000	J:	0.000
	F: 0		

参数: X, Y (X, Y 是圆弧终点相对于起点的坐标), I, J (圆心到圆弧起点的矢量值), F (圆弧插补时的进给速度)

5.3.25 逆圆 IJ

刀具在 X,Y 坐标平面上以一定的进给速度进行圆弧插补,从当前位置(圆弧的起点),沿圆弧移动 到指令给出的目标位置,切削出圆弧轮廓。逆时针圆弧插补叫做逆圆 IJ。逆圆 IJ 编程方式可以画整圆。

n l	j	更圆IJ	
标号:	0	X: 0.000	Y: 0.000
		I: 0.000	J: 0.000
		F: 0	

参数: X,Y(X,Y是圆弧终点相对于起点的坐标),I,J(圆心到圆弧起点的矢量值),F(圆弧插补时的进给速度)

5.3.26 连续模式

当连续模式有效时,从此指令往后,相临的两条指令运动轨迹都是直线,从前一指令执行到后一指 令不需要降速(注:一个连续模式只能连续10条运动指令);当连续模式无效时,从此指令往后,相 邻的两条指令运动轨迹都是直线,从前一指令执行到后一指令必须经过降速过程。

n 1 连续模式

标号: 0 、 设置状态: 禁止

参数:设置状态(通过"切换"键设置禁止或有效状态)

5.3.27 模拟量输出

设置主轴运行速度。如果需要主轴停止运行,编一条指令:模拟量输出 标号:0 S:0

n 1 模拟量输出

标号: 0 S: 0

参数: S(设置主轴速度,主轴速度最大取值为参数-速度中主轴速度)

5.3.28 非联动速度

各轴以设定的速度运行一直运行。与非联动急停、非联动缓停配合使用。

n 1 非联动速度

标号:	0	Fx:	0	Fy:	0
		Fz:	0	Fc:	0

参数: Fx(设置X轴运行的速度), Fy(设置Y轴运行的速度), Fz(设置Z轴运行的速度), Fc(设置 C 轴运行的速度)

5.3.29 非联动相对

设定任意轴以任何速度运行任意距离。

n 1	非耶	关动相对			
标号:	0	轴:	Х	距离:	0.000
		F:	0		

参数: 轴(按"切换"键选择轴),距离(设置运行距离),F(设置运行的速度

5.3.30 非联动缓停

执行到此指令时,做非联动运行的轴设置有效时,缓慢停止运转。

n 1 非联动缓停 标号: 0 Y轴: X轴: 禁止 禁止 Z轴: 禁止 C轴: 禁止

参数: X轴(按"切换"键设置禁止有效), Y轴(按"切换"键设置禁止有效), Z轴(按"切换"键 设置禁止有效), C轴(按"切换"键设置禁止有效)

5.3.31 非联动急停

执行到此指令时,做非联动运动的轴设置有效时,紧急停止运转。

n 1	非助	もうういん もうちょう もうちょう もうちょう もうちょう しんちょう もうちょう もうちょう もうちょう しんしょう しんしょ しんしょ			
标号:	0	X轴:	禁止	Y轴:	禁止
		Z轴:	禁止	C车由:	禁止

参数:X轴(按"切换"键设置禁止有效),Y轴(按"切换"键设置禁止有效),Z轴(按"切换"键 设置禁止有效), C轴(按"切换"键设置禁止有效)

禁止

5.3.32 判断完成

执行到此指令,判断非联动运动轴是否停止运动,停止运动跳转到目的标号所在的程序行。

判新完成 n 1

目的标号:0 标号: 0 轴: Х

参数:轴(按"切换"键选择判断的轴),目的标号(满足条件,跳转到具有相同标号所在的程序行)

5.3.33 等待完成

执行到此指令,等待非联动运动轴完成动作,再执行下一条指令。

等待完成 n 1

标号: 0 轴: Х

参数:轴(按"切换"键选择等待的轴)

5.4 程序编辑界面按键说明

相对运动 绝对运动 暂停 输出 循环 顺圆运动:编程中可能用到的指令,通过屏幕下方的按键选择。

: 拓展菜单,寻找更多指令。

上页:程序编辑时,从当前程序行翻到上一程序行

下页:程序编辑时,从当前程序行翻到下一程序行。长按"下页"时,弹出窗口,按数字键,输入行

号,按"确认"键,能够快速的跳转到输入的程序行。

插行:程序编辑时,在光标所在行的前一行插入结束指令

切换:程序编辑时,用于回机械零选轴,输入输出状态及工件计数方向

删除: 短按"删除"键, 删除某个指令中的数据。长按"删除"键, 删除当前的程序行

5.5 初次使用控制器,编写简单的程序

案例动作要求:

X 轴电机先运行 10mm, 速度 500mm 每分钟, 然后让输出口 1 接通, 接通后等到输入口 1 的信号, 直到输入口 1 有信号接通时, 输出 1 断开

编程动作如下:

按"程序"键,按"F2"键,新建程序。

这时候,界面是由两条"结束"指令组成,光标处在 n1 位置。(按"F1"键,选择"相对运动"指令) 界面会显示为

n 1		相对运动		N	\mathcal{N}	
标号:	0	Х:	0.000		Y:	0.000
		Z:	0.000	171	С:	0.000
		F٠	0	\wedge		

n 2 结束

标号: 0

然后通过光标键,将光标移动到 X 的位置,按数字键,填写 10,接着再通过光标键,将光标移动到 F 的位置,按数字键,填写 500

填写好之后的界面应该显示为

n 1 相对运动

标号: 0	Х:	10	Y:	0.000
	Z:	0.000	С:	0.000
	F:	500		

n 2 结束

标号: 0

编好 n1 之后,再按按键"下页",光标将移动到 n2 的位置。

同理,按 "F4"键,选择输出。通过光标键将光标移动到"输出口号"的位置,按数字键,填写1,接着,再通过光标键将光标移动到"状态"的位置,按"切换"键,将"断"变为"通"。

编写好 n2 之后,再按"下页"编写 n3 依次类推

案例的程序	编写好	如下:				
n 1	木	目对运动				
标号:	0	Х:	10		Y: 0.000	
		Ζ:	0.000		C: 0.000	
		F:	500			
n 2	轩	俞出				
标号:	0	输出	·口号: 1	0 0 0	0 状态:	通
n 3	半	判断跳转(.	此处也可用	「"暂停" 指	令)	
标号:	1	输入	、口号:	1	条件:	断
		目的	的标号:	1		. 117
n 4	斩	俞出				
标号 :	0	输出	·口号: 1	0 0 0	0 状态:	断
n 5	4	吉束				X >
标号:	0					

编写完成,通过按键"上页"或者"下页"检测,没有问题,按一次"返回"键,根据提示输入文件名字(由1-4位数字组成)。再按"确认"键。

再按"自动"键,再按"启动"按键,就可以执行刚刚编写的程序。

附录: 电子齿轮设定

电子齿轮是为了让设备实际移动的距离,与控制器上设置的一致。设备移动距离单位可以是 mm,度数, 圈数等。

分子、分母分别表示进给轴电子齿轮的分子、分母,此数值的取值范围为 1-999999。 电子齿轮分子、分母的确定方法

电子单向转动一轴所需要的脉冲数

电机单向转动一轴所移动的距离(以微米为单位)

将其化简为最减分数,并使分子和分母均为 1-99999 的整数,当有无穷小数时(如π),可将分子,分 母同乘相同数(用计算器多次乘并记住所乘的总值,确定后重新计算以消除计算误差),以使分子、分 母略掉的小数影响最小,单分子和分母均应为 1-99999 的整数。

例 1: 丝杠传动: 步进电机驱动器细分为一转 5000 步, 或伺服驱动器每转 5000 个脉冲, 丝杠导程为 6mm, 减速比 1:1, 即 1.0

 $5000 \rightarrow 5$

 $6 \times 1000 \times 1.0 \rightarrow 6$

即:分子为5,分母为6

例 2: 齿轮齿条:步进电机驱动器细分为一转 6000 步,或伺服驱动器每转 6000 脉冲,齿轮齿数为 20, 模数 2.

则齿轮转一周齿条运动 20×2×π

- $6000 \rightarrow 1 \rightarrow 107$
- $20 \times 2 \times 3.1415926535898 \times 1000 \rightarrow 20.943951 \rightarrow 2241$
- 即:分子为107,分母为2241,误差为2241毫米内差3微米(注意 m应该足够精确)
- 例 3: 旋转角度:步进电机驱动器细分数为一转 5000 步,或伺服驱动器每转 5000 个脉冲,减速比为 1:30
- $5000 \times 30 \rightarrow 5$
- $360 \times 1000 \rightarrow 12$
- 即:分子为5,分母为12,所有单位都换算成角度值

例 4: 运动圈数:步进电机驱动器细分数为一转 5000 步,或伺服驱动器每转 5000 个脉冲,减速比 1:1

- $5000 \rightarrow 5$
- $1 \times 1000 \rightarrow 1$

即:分子为5,分母为1,所有的单位都换算成圈数